Ref No:

< Sri Krishna Institute of Technology, Bangalore>

COURSE PLAN

Academic Year 2019

Program:	B E – Electrical and Electronics Engineering
Semester :	7
Course Code:	15EE73
Course Title:	High voltage engineering
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Shweta B

Academic Evaluation and Monitoring Cell

< Sri Krishna Institute of Technology #29, Hesaraghatta Main Road Chimney Hills, Chikkabanavara Post> <Bangalore- 560090,Katakana, India.> <Phone / Fax :+91-STD-080 > <Web: skit.org.in, e-mail: >

Table of Contents

A. COURSE INFORMATION	<u>4</u>
<u>1. Course Overview</u>	<u>4</u>
2. Course Content	<u>4</u>
<u>3. Course Material</u>	<u>5</u>
<u>4. Course Prerequisites</u>	<u>6</u>
5. Content for Placement, Profession, HE and GATE	<u>6</u>
B. OBE PARAMETERS.	<u>6</u>
<u>1. Course Outcomes</u>	<u>6</u>
2. Course Applications	<u>7</u>
3. Mapping And Justification	<u>7</u>
4. Articulation Matrix	<u>8</u>
<u>5. Curricular Gap and Content</u>	<u>8</u>
6. Content Beyond Syllabus	<u>9</u>
C. COURSE ASSESSMENT	<u>9</u>
<u>1. Course Coverage</u>	<u>9</u>
2. Continuous Internal Assessment (CIA)	<u>10</u>
D1. TEACHING PLAN - 1	<u>10</u>
<u>Module - 1</u>	<u>10</u>
<u>Module – 2</u>	<u>11</u>
<u>E1. CIA EXAM – 1</u>	<u>12</u>
<u>a. Model Question Paper - 1</u>	<u>12</u>
<u>b. Assignment -1</u>	
D2. TEACHING PLAN - 2	
<u>Module – 3</u>	
<u>Module – 4</u>	<u>17</u>
<u>E2. CIA EXAM – 2</u>	<u>18</u>
<u>a. Model Question Paper - 2</u>	
<u>b. Assignment – 2</u>	
D3. TEACHING PLAN - 3.	
<u>Module – 5</u>	
<u>E3. CIA EXAM – 3</u>	<u>24</u>
<u>a. Model Question Paper - 3</u>	
<u>b. Assignment – 3</u>	<u>24</u>
F. EXAM PREPARATION	
<u>1. University Model Question Paper</u>	
2. SEE Important Questions	
<u>G. Content to Course Outcomes</u>	
<u>1. TLPA Parameters</u>	
2. Concepts and Outcomes:	<u>30</u>

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms

15EE73:High voltage engineering

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Year / Semester:	2019/7	Academic Year:	2019-20
Course Title:	High voltage engineering.	Course Code:	15EE73
Credit / L-T-P:	4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	80Marks
CIA Marks:	20	Assignment	05Marks
Course Plan Author:	Shweta B	Sign	Dt:
Checked By:		Sign	Dt:

2. Course Content

	lul Module Content	Teaching		Blooms
e 1	Conduction and Breakdown in Gases: Gases as Insulating	Hours 10	Concepts Dielectric	Level
Ţ	Media, Collision Process, Ionization Processes, Townsend's Current Growth Equation, Current Growth in the Presence of Secondary Processes, Townsend's Criterion for Breakdown, Experimental Determination of Coefficients α and γ , Breakdown in Electronegative Gases, Time Lags for Breakdown, Streamer Theory of Breakdown in Gases, Paschen's Law, Breakdown in Non-Uniform Fields and Corona Discharges. ConductionBreakdown in Liquid Dielectrics: Liquids as Insulators, Pure Liquids and Commercial Liquids, Conduction and Breakdown in Pure Liquids, Conduction and Breakdown in Commercial Liquids. Breakdown in Solid Dielectrics: Introduction, Intrinsic Breakdown, Electromechanical Breakdown, Thermal Breakdown		Material Breakdown Mechanism	L3,
2	Generation of High Voltages and Currents: Generation of High Direct Current Voltages, Generation of High Alternating Voltages, Generation of Impulse Voltages, Generation of Impulse Currents, Tripping and Control of Impulse Generators		Generation	L4
3	Measurement of High Voltages and Currents: Measurement of High Direct Current, Voltages, Measurement of High AC and Impulse Voltages, Measurement of High Currents – Direct, Alternating and Impulse, Cathode Ray Oscillographs for Impulse Voltage and Current Measurements		Measurement	L4
4	Overvoltage Phenomenon and Insulation Coordination in Electric Power Systems: National Causes for Over voltages - Lightning Phenomenon, Overvoltage due to Switching Surges, System Faults and Other Abnormal, Principles of Insulation Coordination on High Voltage and Extra High Voltage Power Systems		Over voltage Phenomenon	
5	Non-Destructive Testing of Materials and Electrical Apparatus: Introduction, Measurement of Dielectric Constant and Loss Factor, Partial Discharge Measurements. High Voltage Testing of Electrical Apparatus: Testing of Insulators and Bushings, Testing of Isolators and Circuit Breakers, Testing of Cables, Testing of Transformers, Testing of Surge Arrestors, Radio Interference Measurements,		High Voltage Testing	L4

3. Course Material

	Details	Available
1	Text books	
	M.S. Naidu, V. Kamaraju, "High Voltage Engineering ["] , Tata McGraw Hill Publishing India, 1999.	In Lib
	C.L. Wadhawa, "High Voltage Engineering", Wiley Eastern Ltd, New Age Ltd, India, 1995.	In Lib
2	Reference books	
1	E. Kuffel, "High Voltage Engineering Fundamentals", Butterworth-Heineman, 2000.	In dept
2	S.K.singh, "Fundamentals of High voltages Engineering", Dhanpat Rai ,&Co(Pvt) ltd, India 2012.	In dept
		In dept
3	Others (Web, Video, Simulation, Notes etc.)	
	Videos on breakdown mechanism in gaseous , liquids and solids	Not Available

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	17EE3	Transformer	harmonics	7		L3
	3	and Generator				
2	17EE5	dc machines	motors	3		L4
	53					

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach	Concept	Instr	Assessment	Blooms'
		Hours		Method	Method	Level
	Categorize the behavior of gas, liquid and solid under High voltage stress.		Dielectric Material	Lecture	Slip Test	L3 Apply
15EE73.2	Analysis the Breakdown Mechanism of gas, liquid and solid by Experimental method by comparing with IEEE standard rating		Breakdown Mechanism	Lecture	Assignment	L4 Analyze
15EE73.3	Analysis the constructional design of HV generation by Voltage doubler and Multiplier circuits		Generation	Lecture	Assignment and Slip Test	L4 Analyze
15EE73.4	Analysis the working of Impulse voltages by Marks circuits	04	Generation	Lecture / PPT	Assignment	L3 Apply
15EE73.5	Apply the systematic approach to measure High voltages by spark gap method by compare with standards		Measureme nt	Lecture	Slip test	L4 Analyze
15EE73.6	Analyze the measurement of Impulse current using CRO and magnetic Link method	-	Measureme nt	Lecture and Tutorial	Assignment	L3
15EE73.7	Determine the causes of over voltage by lightning.	05	Over voltage Phenomeno n	Lecture	Assignment and Slip Test	L5 Evaluate
15EE73.8	Describe the Principles of Insulation coordination		Principles of Insulation coordination	Lecture	Assignment	L2

15EE73.9	Discuss the measurement principle of	05	principle of	Lecture	Assignment	L2
	Partial discharge		Partial		_	
			discharge			
15EE73.10	Analysis the Testing of Electrical	05	High	Lecture	Assignment	L4
	Insulation in Transformers and circuit		voltages			Analyze
	breaker.		Testing			
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	High voltage used in medical field , painting , Printing,	CO1	L2
	Solid, liquid and gaseous dielectric materials used as a insulator for electrical operators.	CO2	L2

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes												
#	COs	PO1		PO		PO			PO					Level
			2	3	4	5	6	7	8	9	0	1	2	
15EE73.1	Categorize the behavior of gas, liquid and solid under High voltage stress.		X	X	X									L3 Apply
15EE73.2	Analysis the Breakdown Mechanism of gas, liquid and solid by Experimental method by comparing with IEEE standard rating		X	X	×									L4 Analyz e
15EE73.3	Analysis the constructional design of HV generation by Voltage doubler and Multiplier circuits		Х	Х	Х									L4 Analyz e
15EE73.4	Analysis the working of Impulse voltages by Marks circuits		Х	Х	Х									L3 Apply
15EE73.5	Apply the systematic approach to measure High voltages by spark gap method by compare with standards		Х	X	X									L4 Analyz e
15EE73.6	Analyze the measurement of Impulse current using CRO and magnetic Link method		Х	Х										L3
15EE73.7	Determine the causes of over voltage by lightning.	X	Х	Х										L5 Evalua te
15EE73.8	Describe the Principles of Insulation coordination		Х											L2
	Discuss the measurement principle of Partial discharge		Х											L2
15EE73.10	Electrical Insulation in Transformers and circuit breaker.		X	X										L4 Analyz e
CS501PC.	Average													

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Мар	oping	Justification	Mapping Level			
со	PO	PO -				
CO1	PO1	knowledge of behavioral characteristics of all dielectric material are required in application of High voltage	L3			
CO1	PO2	Identification of behavioral accepts of dielectric materials are essential for analyze and design.	L3			
CO1	PO3	By knowing the behavioral concepts of dielectric material, which will helps in design n of system components.	L3			
CO1	PO4	Analysis of behavioral of dielectric material to pre step of investigate in research concepts	L3			
CO2	CO2 PO1 Knowledge of Breakdown mechanism of dielectric material are required in order to known the dielectric strength.		L4			
CO2	PO2	Identify and formulate breakdown mechanism in different dielectric media.	L4			
CO2	PO3	various principles of breakdown mechanism , which help in estimate the design concepts of insulator.	L4			
CO2	PO4	design the experimental setup to check the breakdown strength of dielectric materials.	L4			
CO3	PO1	knowledge of generation of HVDC,HVAC components	L3			
CO3	PO2	Analyse the proper design technique to generate HVAC,DC	L3			
CO3	PO3	Analyse the complete design system process to achieve the proper generation method	L3			
CO3	PO4	Experimental analysis be achieved in laboratories.	L3			
CO4	PO1	Basic knowledge of Impulse voltage and their input are required	L3			
CO4	PO2	Identify the impact of impulse voltage are required to before it generations.	L3			
CO4	PO3	analyze the careful and safety design methods for generation of impulse voltage.	L3			
CO4	PO4	Experimental analysis can be done in laboratories	L3			
CO5	PO1	knowledge of basic measurement techniques are required.	L4			
CO5	PO2	Identify the components requirements for measurements of HVAC,DC	L4			
CO5	PO3	Design the systematic and safety methods of measurement of HVAC, HVDC.	L4			
CO5	PO4	system approach can be done experimentally.	L4			
CO6	PO1	knowledge of basic impulse measurement are required	L3			
CO6	PO2	identify the required components used for measurement	L3			

CO6	PO3	design the appropriate method to analyse and design to build the circuits	L3
CO7	PO1	basic knowledge of over voltage and cause of over voltage by lightening	L5
C07	PO2	identify the problems due to lightening	L5
C07	PO3	analyze the solution to over come from effect	L5
CO8	PO1	knowledge of insulation coordination concepts are required	L2
CO8	PO2	identify the different principle of insulation coordination	L2
CO9	PO1	knowledge on partial discharge is required	L2
CO9	PO2	analyze the different principle of partial discharge	L2
CO10	PO1	knowledge on electrical insulation are required	L4
CO10	PO2	identify the types of different electrical insulation process	L4
CO10	PO3	design the different testing process to find the insulation capability of equipments	L4

Note: Write justification for each CO-PO mapping.

5.Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Modul	Title	Teaching			f quest		Exam		CO	Levels
e#		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Conduction and Breakdown in	10	2	-	-	1	1	2	CO1,	L3, L4
	Gases:								CO2	
	Generation of High voltage ,	10	2	-	-	1	1	2	CO3,	L4L4
	current,Impulse voltages and								CO4	
	currents.									
	Measurement of High voltage ,	10	-	2	-	1	1	2	CO5,	L3, L4
	current,Impulse voltages and								CO6	
	currents.						ļ			
	Overvoltage Phenomenon and	-	-	2	-	1	1	2	CO7,	L2, L3
	Insulation Coordination in Electric								C08	
	Power Systems:									
5	Non-Destructive Testing of		-	-	4	1	1	2	CO9,	L2, L4
	Materials and Electrical								CO10	
	Apparatus:									
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2.Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	l3, l4, l4, l4
CIA Exam – 2	30	CO5, CO6, CO7, Co8	L3, L4L2, L3,
CIA Exam – 3	30	CO9, CO10	L2, L4
Assignment - 1	05	CO1, CO2, CO3, CO4	l3, l4, l4, l4
Assignment - 2	05	CO5, CO6, CO7, CO8	L3, L4L2, L3,
Assignment - 3	05	CO9, CO10	L2, L4
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –		CO1 to Co9	L2, L3, L4
Slip test			
Final CIA Marks	40	-	_

Note : Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Module - 1

Title:	Conduction and Breakdown in Gases	Appr	16 Hrs
nite.	Conduction and Breakdown in Gases	Appr Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Categorize the behavior of gas, liquid and solid under High voltage stress.	CO1	L3
2	Analysis the Breakdown Mechanism of gas, liquid and solid by Experimental method by comparing with IEEE standard rating.	CO2	L4
b	Course Schedule	-	-
Class No	CO	Level	
1	Introduction to Subject, course objectives and outcomes, Introduction to high voltage and Insulating dielectric medias	C01	L3
2	Collision Process, Ionization Processes, Townsend's Current Growth Equation,	C01	L3
3	Current Growth in the Presence of Secondary Processes, Townsend's Criterion for Breakdown,	C01	L3
4	Experimental Determination of Coefficients α and γ , Breakdown in Electronegative Gases, Time Lags for Breakdown,	C01	L3
5	Streamer Theory of Breakdown in Gases, Paschen's Law, Breakdown in Non-Uniform Fields and Corona Discharges.	C01	L3
6	ConductionBreakdown in Liquid Dielectrics: Liquids as Insulators,	C02	L4
7	Pure Liquids and Commercial Liquids, Conduction and Breakdown in Pure Liquids	C02	L4
8	Conduction and Breakdown in Commercial Liquids.	C02	L4
9	Breakdown in Solid Dielectrics: Introduction, Intrinsic Breakdown,	C02	L4
10	Electromechanical Breakdown, Thermal Breakdownand problems	C02	L4
с	Application Areas	СО	Level
1	High voltage used in medical field , painting , Printing,	CO1	L3
2	Solid,liquid and gaseous dielectric materials used as a insulator for electrical operators.	CO2	L4
d	Review Questions	_	_
1	Discuss various the dielectric properties of Solid, liquid and gaseous dielectric materials.	CO1	L1

2	Discuss Ionization process, Explain primary ionization process.	CO1	L3
3	Derive the current growth equation using Townsend methods	CO1	L3
4	Explain the Townsend's Criterion for Breakdown	CO1	L3
5	Explain the Breakdown in Electronegative Gases,	CO1	L3
6	Explain the Time Lags for Breakdown,,.	CO1	L3
7	Explain the Streamer Theory of Breakdown in Gases	CO1	L3
8	Derive Paschen's Law	CO2	L3
9	Write a brief note on Breakdown in Non-Uniform Fields and Corona Discharges	CO2	L4
10	Mention the gases used as the insulating medium in electrical apparatus? What is breakdown voltage?	CO1	L1
11	What is breakdown voltage?	CO1	L4
12	What are the two types of electrical discharges in gases?		
13			
14	State the two types of theories which explain the mechanism for breakdown	CO2	L3
15	Mention the gases used as the insulating medium in electrical apparatus? What is breakdown voltage?	CO2	L4
16	What are pure liquids ?Give examples.	CO1	L1
17	Mention some of the applications of liquid dielectrics.	CO1	L4
			·
18	Name some examples of liquid dielectrics.	CO2	L3
19	What are the different types of solid insulating materials?	CO2	L4
20	Explain the two types of intrinsic breakdown mechanisms.	CO1	L1
21	Explain suspended particle theory and cavitation & bubble theory in	CO2	L3
	commercial liquid dielectrics.		_5
22	Explain electronic breakdown and electro-convection breakdown in commercial liquid dielectrics	CO1	L1
23	In an experiment with certain gas, it was found that the steady state current is 5.5 X 10-8 A at 8KV at a distance of 0.4cm between the electrode plates. Keeping the field constant and reducing the distance to 0.01cm results in a current of 5.5 X 10-9A. Calculate Townsend's primary ionization co-efficient.	CO2	L3
24	In an experiment with certain gas, it was found that the steady state current is 6 X 10-8 A at 10KV at a distance of 0.4cm between the electrode plates. Keeping the field constant and reducing the distance to 0.2cm results in a current of 10 X 10-9A. Calculate Townsend's primary ionization co-efficient.	CO2	L4
25	A steady current of 600 μ A flows through the plane electrode separated by a distance of 0.5 cm when a voltage of 10 kV is applied. Determine the Townsend's first ionization coefficient if a current of 60 μ A flows when the distance of separation is reduced to 0.1 cm and the field is kept constant at the previous value.	CO2	L3
26	A solid dielectric specimen has a dielectric constant of 4.2, ad tan δ = 0.001 at a frequency of 50 Hz. If it is subjected to an alternating field of 50 kV/cm, calculate the heat generated in the specimen due to the dielectric loss.	CO2	L4
27	A solid dielectric specimen with a dielectric constant of 4.0 has an internal void of thickness 1 mm. The specimen is 1 cm thick and is subjected to a voltage of 80 kV (rms). If the void is filled with air and if the breakdown strength of air can be taken as 30 kV (peak)/cm, find the voltage at which an internal discharge can occur.	CO1	L1
28	The following observations were made in an experiment for determination of dielectric strength of transformer oil. Determine the power law equation. Gap Spacing: 4 6 8 10 Vb (kV): 88 135 165 212 Q9. The following observations were made in an experiment for determination of dielectric strength of transformer oil. Determine the power law equation. Gap Spacing: 4 6 10 12 Vb (kV): 90 140 210 255	CO1	L4

	Explain the Electromechanical Breakdown, Thermal Breakdown of solid dielectrics.	CO2	L3
е	Experiences	-	-
1		CO1	L2
2			
3			
4		CO3	L3
5			

Module – 2

Title:	Generation of High Voltages and Currents:	Appr Time:	10 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze the constructional design of HV generation by voltage Doubler	CO3	L4
	circuits and multiplier circuits		
2	Analyze the working of Impulse voltage by Marks circuits.	CO4	L3
b	Course Schedule	_	-
lass No	Module Content Covered	СО	Level
1	Introduction to Subject, course objectives and outcomes	CO3	L4
2	In the fields of electrical engineering and applied physics, high voltages (d.c., a.c., and impulse) are required for several applications	CO4	L3
3	Generation of High Direct Current Voltages using Half wave and full wave rectifier .	CO3	L4
4	problems	CO4	L3
5	Generation of High Alternating Voltages,	CO3	L4
6	problems	CO4	L3
7	Generation of Impulse Voltages,	CO3	L4
8	problems	CO4	L3
9	Generation of Impulse Currents,	CO3	L4
10	Tripping and Control of Impulse Generators	CO4	L3
с	Application Areas	СО	Level
1	Electron microscopes and xray units require high d.c. voltages of the	CO3	L3
	order of 100 kV or more. Electrostatic precipitators, particle accelerators in nuclear physics, etc. require high voltage (d.c) of several kilovolts and		
2	even megavolts. High a.c. voltages of one million volts or even more are required for testing power apparatus rated for extra high transmission voltages (400 kV system and above).	CO4	L4
d	Review Questions	_	
1	Explain with diagrams, different types of rectifier circuits for producing high d.c. voltages.,?	CO3	L1
2	Why is a Cockcroft-Walton circuit preferred for voltage multiplier circuits? Explain its working with a schematic diagram.	CO4	L3
3	Give the expression for ripple and regulation in voltage multiplier circuits. How are the ripple and regulation minimized?	CO3	L2
4	Explain the different schemes of cascade connection of transformers for producing very high a.c. voltages	CO4	L4
5	Why is it preferable to use isolating transformers for excitation with cascade transformer units, if the power requirement is large	CO4	L2
6	What is the principle of operation of a resonant transformer? How is it advantageous over the cascade connected transformers?	CO3	L5
7	What is the principle of operation of a resonant transformer? How is it advantageous over the cascade connected transformers?	CO3	L2
	What is a Tesla coil? How are damped high frequency oscillations	CO3	L3

	obtained from a Tesla coil?		
9	Define the front and tail times of an impulse wave. What are the	CO3	L5
0	tolerances allowed as per the specifications?	000	-5
10	Give different circuits that produce impulse wave explaining clearly their	CO3	L2
	relative merits and demerits		
11	Describe the circuit arrangement for producing lightning current wave-	CO3	L3
	forms in laboratories.		
12	How is the circuit inductance controlled and minimized in impulse current generators?	CO3	L5
13	Explain with neat diagram the principle of operation of (i) series (ii) parallel	CO3	L5
	resonant circuits for generating high a.c. voltages. Compare their		
	performance.	<u> </u>	
14	Explain with neat sketches Cockroft-Walton voltage multiplier circuit. Derive the expression for a) high voltage regulation, b) ripple, c) optimum	CO3	L2
	no of stages when the circuit is (i) unloaded (ii) loaded.		
15	Explain with neat diagram the principle of operation of (i) series (ii) parallel	CO3	L3
-	resonant circuits for generating high a.c. voltages. Compare their	-	-
	performance.		
16	How will you specify an impulse generator? Describe the working of a	CO3	L5
	multi-stage Marks impulse generator with a neat sketch		
17	Write short note on (a) impulse current generator, (b) generation of switching surges, (c) multistage Marx circuit, (d) generation of high	CO3	L5
	frequency high voltage, (e) Trigation gap		
18	An impulse generator has eight stages with each condenser ra	CO3	L2
10	impulse wave. What is the maximum output voltage of the generator, if	005	
	the charging voltage is 120kV? 5. Define the terms (i) Impulse voltages; (ii)		
	Chopped wave; (iii) Impulse flash overvoltage; (iv) Impulse puncture		
	voltage; (v) Impulse ratio for flash over; (vi) Impulse ratio for puncture		
19	Define Impulse waveform. Draw the graph with different components	CO3	L3
	associated with it. Write about different components of impulse generator.		
е	Experiences	_	_
1		CO1	L2
2			<u> </u>
3			
4		CO3	L3
		5	0

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code	e:	CS501PC	Sem:	I	Marks:	30	Time:	75 minute		
Cour	ourse: High voltage engineering									
-	-	Note: Answ	/er any 3 qu	estions, eac	h carry equ	al marks.		Marks	СО	Level
1	а	Derive the o	current grow	th equation	in electrone	egative gase	es.	20	CO1	L1
	b		Define statistical time lag and formative time lag to breakdown. Show with V-t diagram							L2
	C	steady curr mm betwe reducing th Calculate of cathode to	In an experiment to measure α for a certain gas, it was found that the steady current is 3.8×10-8 A at a voltage of 8 kV and at a distance of 4 mm between the plane electrodes. Keeping the field constant and reducing the distance to 1 mm resulted in a current of 3.8×10-9 A. (a) Calculate α ; (b)Calculate the number of electrons emitted from the cathode to anode; (c) Determine the electrode spacing that would lead to an electron multiplication factor of 10-8.							
2	а	What are tl from pure		cial liquids o dielectrics?	dielectrics, a	and how are	e they differe	ent 20		L2

	b	What is "stressed oil volume theory", and how does it explain breakdown			L4
		in large volumes of commercial liquid dielectrics?			64
	С	What is 'thermal breakdown' in solid dielectrics, and how is practically more significant than other mechanism?			L3
	d				L2
3	а	Explain with diagrams, different types of rectifier circuits for producing high d.c. voltages.	20	CO3	L1
	b	Why is a Cockcroft-Walton circuit preferred for voltage multiplier circuits? Explain its working with a schematic diagram		CO4	L2
	С	Define the front and tail times of an impulse wave. What are the tolerances allowed as per the specifications?			L1
	d				L2
4	а	Explain the different schemes of cascade connection of transformers for producing very high a.c. voltages,	20		L2
	b	What is the principle of operation of a resonant transformer? How is it advantageous over the cascade connected transformers?			L2
	С	Give the expression for ripple and regulation in voltage multiplier circuits. How are the ripple and regulation minimized?			L1
	d				L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions											
Crs Code:	15EE73	Sem:	VII	Marks:	5 / 10	Time:	90 – 120 minutes					
Course:	High voltage eng	gineering										

Cours		tage engineering						
<u> </u>		to answer 2-3 assignments. Each assignmen	•					
SNo	USN	Assignment Descr			Marks	СО	Level	
1		Describe the circuit arrangement for proc forms in laboratories.			5	CO1	L2	
2		How is the circuit inductance controlled an generators?				CO2	L3	
3		Give different circuits that produce impulso relative merits and demerits.	,		CO2 CO1	L4 L3		
4		allowed as per the specifications?	Define the front and tail times of an impulse wave. What are the tolerances allowed as per the specifications?					
5		What is a Tesla coil? How are damped obtained from a Tesla coil?		CO2	L4			
6		An impulse generator has eight stages w 0.16µFD and 125 kV. The load capacitor a series resistance and damping resistance lighting impulse. If the charging voltage is output voltage and discharge energy?	available is 1000 pFD. F needed to produce st 120 kV, what is the ma	ind the tandard		CO1	L3	
7		When over voltages are generated in EHV s			6	CO2	L4	
8		What are the causes for power frequency a	nd its harmonic over vol	tages?	5	CO1	L3	
9		Define: Elastic and inelastic collision.						
10		Classification of liquid dielectrics.?.						
11		Which are the electrical properties of liquid	dielectrics					
12		Define intrinsic breakdown						
13		Give different types of liquid dielectrics.						
14		Give different types of solid dielectrics						
15		What is a cascaded transformer? Explain wh	hy cascading is done?					
16		Explain and compare the performance of doublercircuits for generation of high dc vol	half wave rectifier and	voltage				
17		Describe with neat diagram a three stage ca power ratings of various stages of the transf	ascaded transformer. La	abel the				
18		Write in details the principle of operation		^s series				

	resonant circuit.		
19	Discuss the working principle of high frequency ac high voltage generation.		
20	Explain with neat sketches Cockroft-Walton voltage multiplier circuit. Derive the expression for a) high voltage regulation, b) ripple, c) optimum no of stageswhen the circuit is (i) unloaded (ii) loaded.		
21	A ten stage Cockraft-Walton circuit has all capacitors of 0.06 µF. The secondaryvoltage of the supply transformer is 100 kV at a frequency of 150 Hz. If the loadcurrent is 1 mA, determine (i) voltage regulation (ii) the ripple (iii) the optimumnumber of stages for maximum output voltage (iv) the maximum output voltage.		
22	A 100 kVA 250 V/200 kV feed transformer has resistance and reactance of 1% and5% respectively. This transformer is used to test a cable at 400 kV at 50 Hz. The cable takes a charging current of 0.5 A at 400 kV. Determine the series inductance required. Assume 1% resistance of the inductor. Also determine input voltage to the transformer. Neglect dielectric loss of the cable		
23	Explain with neat diagram the principle of operation of (i) series (ii) parallel resonant circuits for generating high a.c. voltages. Compare their performance.		

D2. TEACHING PLAN - 2

Module – 3

T 111		A	
Title:	Measurement of High Voltages and Currents:	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply the systematic approach to measurements of High AC , DC voltage by Spark gap method by compare with standard values.	CO5	L2
2	Analyze the measurement of Impulse voltage, current using CRO and magnetic link method.	CO6	L3
b	Course Schedule		
_	o Module Content Covered	со	Level
1	Introduction to Subject, course objectives and outcomes	CO5	Level L2
2	Measurement of High Direct Current, Voltages,	CO6	L3
3	Voltage Doubler Circuits, Voltage Multiplier Circuits, Van de Graaff Generator	CO5	L2
4	Measurement of High AC by Cascade Transformers,	CO6	L3
5	Measurement of High AC by Resonant Transformers	CO5	L2
6	damped high frequency oscillations obtained from a Tesla coil	CO6	L3
7	Standard sphere gap measurements of HV AC, HV DC, and impulse voltages	CO5	L2
8	Measurement of Impulse Voltages , Standard Impulse Wave-shapes	CO6	L3
9	Analysis of Impulse Generator Circuit Series	CO5	L2
10	Cathode Ray Oscillographs for Impulse Voltage and Current Measurements	CO6	L3
с	Application Areas	СО	Level
1	Direct measurement of high voltages is possible up to about 200 kV, and	CO1	L3
_	several forms of voltmeters have been devised which can be connected directly across the test circuit.		
2	A generating voltmeter is a variable capacitor voltage generator which generates current proportional to the voltage to be measured	CO2	L4
3	High currents are used in power system for testing circuit breakers, cables lightning arresters etc. and high currents are encountered during lightning discharges, switching transients and shunt faults. These		

	currents require special techniques for their measurements.		
d	Review Questions	-	-
1	Explain the principle and construction of an electrostatic voltmeter for very high voltages. What are its merits and demerits for high voltage AC.	CO1	L1
2	measurements ? Explain the different methods of high current measurements with their relative merits and demerits.	CO1	L3
3	What are the requirements of an oscillograph for impulse and high frequency measurements in high voltage test circuits ?	CO2	L2
4	The H. V. arm of an R-C, divider has 15 numbers of 120 ohm resistors with a 20 pF capacitor to ground from each of the junction points. The L.V. arm resistance is 5 ohms. Determine the capacitance needed in the L.V. arm for correct compensation.	CO2	L4
5	Explain the Factors affecting the measurements.	CO2	L2
6	Explain the Measurement of high impulse currents-Rogogowsky coil and Magnetic Links	CO2	L5
7		CO2	L2
8	Potential dividers-resistance dividers capacitance dividers mixed RC potential dividers.	CO2	L3
9	Explain the Series resistance micro ammeter for HV DC measurements.	CO5	L2
10	Chubb and Fortescue method for HV AC measurement.	CO6	L3
11	Explain the Electrostatic voltmeter-principle, construction and limitation.	CO5	L2
12	Explain the Chubb-Fortesque method for peak voltage measurement bringing out the sources of errors.	CO6	L3
13	Write principle and construction of generating voltmeter	CO5	L2
14	Discuss the main sources of errors common to all type of dividers	CO6	
15	Explain the principle of operation and construction of an electrostatic voltameter used for the measurement of high voltage. What are the limitations?	CO5	5 L2
16	Explain sphere gap method? Explain specifications on spheres and associated accessories	CO6	L3
17	Write short notes on Rogogowsky coil and Magnetic Links.	CO5	L2
18	Determine the breakdown voltage for air gaps of 2 mm and 15 mm lengths under uniform field and standard atmospheric conditions. Also, determine the voltage ifthe atmospheric pressure is 750 mm Hg and temperature 35°C	CO6	L3
19	A Rogogowsky coil is required to measure impulse current of 8 kA having rate of changeof current of 1010 A/sec. The voltmeter is connected across the integrating circuitwhich reads 8 volts for full scale deflection. The input to the integrating circuit isfrom the RogogowskyCoil. Determine the mutual inductance of coil R and C of theintegrating circuit.	CO5	L2
е	Experiences	-	-
1			
2			
3			
4			
5			

Module – 4

Title:	Over-voltage Phenomenon and Insulation Coordination in Electric Power	Appr	16 Hrs
	Systems	Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level

1	Determine the causes of over voltage by Lightning Transient.	CO7	L3
2	Describe the Principles of Insulation co-ordination.	CO8	L2
b lass No.	Course Schedule Module Content Covered	со	Level
1	Introduction to Subject, course objectives and outcomes National Causes for Over voltages	<u>CO7</u>	L <u>3</u>
2	č	CO7	L4
3	problems	C07	L3
4	Lightning Phenomenon	C07	L2
5	problems	CO8	
6	Overvoltage due to Switching Surges,	CO8	L4
7	System Faults and Other Abnormal,	CO8	L3
8	Principles of Insulation Coordination on High Voltage	CO8	L3
9	Extra High Voltage Power Systems	CO8	L4
10	Lightning Phenomenon	CO8	L3
С	Application Areas	<u> </u>	Level
1	Insulation Coordination on High Voltage	CO8	L3
2	Estimation of System Faults and Other Abnormal	C07	L4
-1	Deview Orgentieure		
d	Review Questions	-	-
1	Explain the losses in a dielectric.	CO7	L1
2	Explain the measurement of dielectric constant and loss factor	<u>CO7</u>	L <u>3</u>
3	With a neat sketch explain high voltage Schering bridgefor the measurement of capacitance of bushings	CO8	L2
4	A Schering bridge was used to measure the capacitance and loss angle of ah.v. bushing. At balance, the 636 Ohm. What are the values of capacitance	C07	L4
5	The observations obtained were as follows. (Method employed: Substitution method) (i) With standard condenser and leads, the capacitance, C1 = 504 pF the dissipation factor, D1 = 0.0003. (ii) With standard condenser in parallel with the empty test cell, capacitance C2 = 525 pF, and dissipation factor D2 = 0.00031. (iii) With the standard condenser in parallel with the test cell and oil, capacitance C3 = 550 pF and dissipation factor D3 = 0.00075.	CO8	L2
6	A 33KV, 50Hz high voltage Schering Bridge is used to test a sample of insulation. The various arms have the following parameters at balance, the standard capacitors 500pF, the resistive branch 800Ohm, and branch with the capacitance of the sample, its parallel equivalent loss resistant, the power factor and the power loss under the test conditions	CO8	L5
7	Explain measurement of large capacitance.	CO8	L2
8	Write short note on transformer ratio Arm Bridge.	CO8	L5
9	What are partial discharges? How are they detected using (a) straight detection, (b) balance detection methods?	CO8	L2
10	Explain the measurement of dielectric constant and loss factor	CO8	L5
11	With a neat sketch explain high voltage Schering bridgefor the measurement of capacitance of bushings	CO8	L2
е	Experiences	_	
1			
2			
3			
J			
4			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		15EE73 Sem: VII Marks: 30 Time: 75	minute	S	
Code					
Cour	se. -	High voltage engineering Note: Answer any 2 questions, each carry equal marks.	Marks	со	Level
-	a	With a neat sketch explain high voltage Schering bridgefor the	15	CO5	Level L1
	a	measurement of capacitance of bushings	CT	005	
	b	A 33KV, 50Hz high voltage Schering Bridge is used to test a sample of insulation. The various arms have the following parameters at balance, the standard capacitors 500pF, the resistive branch 800Ohm, and branch with the capacitance of the sample, its parallel equivalent loss resistant, the power factor and the power loss under the test conditions		CO6	L2
2	a b c	Write short note on transformer ratio Arm Bridge. Explain the measurement of dielectric constant and loss factor Explain the Series resistance micro ammeter for HV DC measurements.	15	CO7 CO6 CO8	L2 L2 L2 L2
3	a b	What are partial discharges? How are they detected using (a) straight detection, (b) balance detection methods? The observations obtained were as follows. (Method employed: Substitution method) (i) With standard condenser and leads, the		CO8 CO8	L1 L2
		capacitance, C1 = 504 pF the dissipation factor, D1 = 0.0003. (ii) With standard condenser in parallel with the empty test cell, capacitance C2 = 525 pF, and dissipation factor D2 = 0.00031. (iii) With the standard condenser in parallel with the test cell and oil, capacitance C3 = 550 pF and dissipation factor D3 = 0.00075.			
4	а	Explain sphere gap method? Explain specifications on spheres and associated accessories	15	CO8	L2
	b	A Rogogowsky coil is required to measure impulse current of 8 kA having rate of changeof current of 1010 A/sec. The voltmeter is connected across the integrating circuitwhich reads 8 volts for full scale deflection. The input to the integrating circuit isfrom the RogogowskyCoil. Determine the mutual inductance of coil R and C of theintegrating circuit.		CO6	L2
		Determine the mutual inductance of coil R and C of theintegrating circuit.			

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	ode:	15EE73	Sem:	VII	Marks:	5 / 10	Time:	90 - 120	5 minute	es	
Cours	3e: /	High volt	tage engineering								
Note:	Each	student	to answer 2-3 assigr	nments. Eac ^l	n assignme [,]	nt carries ec	_l ual mark.				
SNo		USN		Assigr	nment Desc	ription			Marks	СО	Level
1	1	,	Explain experiment	Ital set up c	of any one	method of	testing of a	a circuit	t 5	CO8	L2
		!	breaker						<u> </u>	L'	
2	Ē		What is insulation	coordination	n? Explain	statistical m	nethod of ir	sulation	ז ו <u>5</u>	CO9	L3
	L	!	coordination					'	<u> </u>	L'	
3	1	/	Write a short note o	on capacitan	ce potentia ¹	ι dividers.		'	!	CO10	L4
4	í —	,	What are the r	methods fc	or measure	ement of	High AC	voltage	9 5	CO9	L3
	L	/	measurement? Exp	blain any one	in detail.				<u> </u> '	L'	

 5 Explain the different methods of high current measurements with their relative merits and demerits. 6 Explain working principle, construction and applications of van-de-graff 	CO8	L2
6 Explain working principle construction and applications of van-de-graff		
generator	CO9	L3
7 Explain the classification of solid dielectrics used in practice	CO10	L4
8 What is the principle of operation of a resonant transformer? How is it advantageous over the cascade transformer units, if the power requirement is large?	CO9	L3
9 What are the methods for measurement of High AC voltage measurement? Explain any one in detail.	CO8	L2
10 Explain the different methods of high current measurements with their relative merits and demerits.	CO9	L3
11Explain working principle, construction and applications of van -de-graff generator	CO10	L4
12 Explain the classification of solid dielectrics used in practice.	CO9	L3
13 What is the principle of operation of a resonant transformer? How is it advantageous over the cascade transformer units, if the power requirement is large?	CO8	L2
14 A 12 stage impulse generator has 0.126 µF capacitors. The wave front and the wave tail resistances connected are 800 ohms and 5000 ohms respectively. If the load capacitor is 1000 pF. Find the front and tail times of the impulse wave produced?	CO9	L3
15With suitable illustrations explain how insulation level is chosen for various equipments in a 230/132 KV substation.	CO10	L4
16	CO9	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Non-destructive insulation testing techniques , High voltage tests on	Appr	16 Hrs
	electrical apparatus	Time:	
a	Course Outcomes	-	Blooms
_	The student should be able to:	-	Level
1	Discuss the Measurement principle of Partial Discharge	COg	L2
2	Analyze the Testing of Electrical insulation in Transformer and circuit	CO10	L4
	breakers.		
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction to Subject, course objectives and outcomes	COg	L2
2	Dielectric loss and loss angle measurements using Schering Bridge,	CO10	L4
3	Transformer ratio Arms Bridge.	CO9	L2
4	Need for discharge detection and PD measurements aspects	CO10	L4
5	Factor affecting the discharge detection. Discharge detection methods-	CO9	L2
	straight and balanced methods.		
6	Definitions of terminologies, tests on isolators,	CO10	L4
7	Insulation testing of circuit breakers,	COg	L2
8	Insulation testing of cables insulators	CO10	L4
9	Insulation testing of transformers	CO9	L2
10	Insulation testing of power capacitance.	CO10	L4
11			
С	Application Areas	СО	Level
1		CO10	L3
2		CO9	L4

d	Review Questions	-	-
1	What is insulation coordination? Explain statistical method of insulation		
	coordination		
2	What is a partial discharge? Explain method to measure it with neat	CO10	L1
	diagram.		
3	Explain High voltage Schering bridge	CO10	L
4	Explain High voltage test on insulator	CO9	 La
5	Explain experimental set up of any one method of testing of a circuit	CO9	L
J	breaker	009	
6	Explain, with a schematic diagram, one method of measuring RIV of	CO9	La
0	transmission line	cog	
7	Explain the importance of RIV measurements for EHV power apparatus.	CO10	L
/ 8	Write a short note on design and layout of HV laboratory	CO10 CO9	
-	Define Electrical discharge.	CO10	L
9			
10	Define Discharge Inception voltage.	CO9	Lź
11	Define Discharge extinction voltage	CO10	L
12	Define Discharge magnitude.	CO9	Lź
13	Define Discharge magnitude.	CO10	
14	Define Discharge energy	CO9	Lź
15	Define Discharge rate	CO10	L
16	Define Discharge detector.	CO9	Lź
17	Define Electrical discharge.	CO10	L
18	Define Discharge Inception voltage.	CO9	Lá
19	Define Discharge extinction voltage	CO10	L
20	A Schering bridge was used to measure the capacitance and loss angle	CO9	Lá
	of hv bushing. At balance, the observations were: the value of the		
	standard condenser = 100 pF, R3 = 3180 values of capacitance and tan δ		
	of the bushing?		
21	Explain the losses in a dielectric.	CO9	Lá
22	Explain the testing of overhead line insulators.	CO10	L
23	Explain the testing of bushings.	CO9	Lź
24	Explain the methods for testing of cables.	CO10	L
25	Explain the method of impulse testing of high voltage transformer? What	CO9	Lź
	is the procedure adapted for locating the fault?		
26	Explain the testing of power transformers	CO10	L
27	Define the following terms – (a) withstand voltage (b) flash over voltage (c)	CO9	Lź
	50% flash over voltage, (d) wet and dry power frequency tests as referred	-	
	to high voltage testing, (e) creepage distance of an insulator		
28	Explain the testing of circuit breakers	CO10	L
29	What are the different power frequency tests done on insulator, mention	CO9	Li
0	the procedure of testing.	Ũ	
30	What are the different power frequency tests done on insulator, mention	CO10	L
-	the procedure of testing	-	
31	An audio frequency Schering bridge was used to determine the dielectric	COg	Lá
	constant and tan δ of transformer oil at 1 kHz. The observations obtained		
	were as follows. (Method employed: Substitution method) (i) With		
	standard condenser and leads, the capacitance, $C1 = 504$ pF the		
	dissipation factor, D1 = 0.0003. (ii) With standard condenser in parallel with		
	the empty test cell, capacitance $C_2 = 525 \text{ pF}$, and dissipation factor $D_2 =$		
	0.00031. (iii) With the standard condenser in parallel with the test cell and		
	oil, capacitance C ₃ = 550 pF and dissipation factor D ₃ = 0.00075. Find the		
	dielectric constant and tan δ of the transformer oil?		
32	A 33KV, 50Hz high voltage Schering Bridge is used to test a sample of	CO9	Lá
<u> </u>	insulation. The various arms have the following parameters at balance,	209	L2
	the standard capacitors 500pF, the resistive branch 8000hm, and branch		
	with parallel combination of resistance and the sample, its parallel		
	equivalent loss resistant, the power factor and the power loss under the		
	test conditions.		
	Write short note on transformer ratio Arms Bridge.	CO10	L

34	What are partial discharges? How are they detected using (a) straight detection, (b) balance detection method.	CO9	L2
35	With a neat sketch explain high voltage Schering Bridge for the measurement of capacitance of bushings.	CO10	L4
36	Explain the measurement of dielectric constant and loss factor.	CO9	L2
37	Define Discharge magnitude.	CO10	L4
е	Experiences	-	-
1			
2			
3			
4			
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code	9:	15EE73	Sem:	VII	Marks:	30	Time:	75 minute	ès			
Cour	rse:	High voltag	le engineel	ring								
-	-	Note: Answ	/er any 2 q	uestions, ead	ch carry equ	ual marks.		Marks	СО	Level		
1	а	What is ins coordinatio		ordination? E	xplain statis	stical metho	od of insulati	on 20	CO9	L1		
	b	Explain Hig	h voltage t	est on insulat	or of any or	ne power ap	paratus.		CO9	L2		
	С	Explain the	Explain the measurement of dielectric constant and loss factor.									
2	а	What is a diagram	eat 20	CO9	L2							
	b A 33KV, 50Hz high voltage Schering Bridge is used to test a sample of insulation. The various arms have the following parameters at balance, the standard capacitors 500pF, the resistive branch 8000hm, and branch with parallel combination of resistance and the sample, its parallel equivalent loss resistant, the power factor and the power loss under the test conditions.							ce, ch lel	CO10	L4		
3	a	Explain exp breaker	perimental	set up of ar	ny one met	hod of testi	ng of a circ	uit 20	CO9	L2		
	b	Explain Hig	h voltage S	Schering bride	ge				CO10	L4		
	 C What are partial discharges? How are they detected using (a) straight detection, (b) balance detection method. 							ght		L1		
4	а								CO9	L2		
		is the procedure adapted for locating the fault?								<u> </u>		
	b								CO9 CO10	L2 L4		
	С	Explain the	Explain the methods for testing of cables.									

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
ode: 15EE73							o minutes	3		
Course: High voltage engineering										
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
USN		Assignment Description							Level	
	What are partial	discharge	s? Define: hund	red percer	nt flashover	voltages.	5	CO9	L2	
2 What are broad band and narrow band detectors? 5 CO9 L3										
3 Define Electrical discharge.								CO10	L4	
<u>-</u>	se: High vol Each student	Ee: High voltage engineering Each student to answer 2-3 ass USN What are partial What are broad b	ode: 15EE73 Sem: VII se: High voltage engineering Each student to answer 2-3 assignments USN A What are partial discharge What are broad band and	ode: 15EE73 Sem: VII Marks: se: High voltage engineering Each student to answer 2-3 assignments. Each assignment USN Assignment Desetered What are partial discharges? Define: hunde What are broad band and narrow band de	ode: 15EE73 Sem: VII Marks: 5 / 10 se: High voltage engineering	ode: 15EE73 Sem: VII Marks: 5 / 10 Time: se: High voltage engineering Image: Second	Se: High voltage engineering Each student to answer 2-3 assignments. Each assignment carries equal mark. USN Assignment Description What are partial discharges? Define: hundred percent flashover voltages. What are broad band and narrow band detectors?	ode: 15EE73 Sem: VII Marks: 5 / 10 Time: 90 – 120 minutes se: High voltage engineering Image: Second Se	ode: 15EE73 Sem: VII Marks: 5 / 10 Time: 90 – 120 minutes se: High voltage engineering Each student to answer 2-3 assignments. Each assignment carries equal mark. Marks CO USN Assignment Description Marks 5 CO9 What are partial discharges? Define: hundred percent flashover voltages. 5 CO9 What are broad band and narrow band detectors? 5 CO9	

4	Define Discharge Inception voltage.	5	CO10	L3
5	Define Discharge extinction voltage		CO9	L2
6	Explain the testing of overhead line insulators		CO9	L3
7	Explain the methods for testing of cables		CO10	L4
8	Explain the testing of power transformers		CO10	L3
9	Explain the method of impulse testing of high voltage transformer? what is the procedure adapted for locating the fault?		CO9	L2
10	What are the different power frequency tests done on insulator, mention the procedure of testing		CO9	L3
11	Define the following terms – (a) withstand voltage (b) flash over voltage (c) 50% flas over voltage, (d) wet and dry power frequency tests as referred to high voltage testing, (e) creepage distance of an insulator. 8. Explain the testing of circuit breakers.		CO10	L4
12	Define Disruptive discharge voltage.		CO10	L3
13	Define: Fifty percent flashover voltage.		CO9	L2
14	Define: Withstand Voltage.		CO9	L3
15	Define: Creep age distance.		CO10	L4
16	State the advantages and disadvantages of field tests		CO10	L3
17	State the different tests on cables.		CO9	L2
18	Which are the tests normally conducted on surge arresters?		CO9	L3
19				
20				

F. EXAM PREPARATION

1. University Model Question Paper

Cou	irse:	High voltag	ge engineering	9			Month /	/ Year	May /	2018
Crs	Code:	15EE73	Sem:	VII	Marks:	100	Time:		180	
	1							1	minut	1
-	Note	Answer all	FIVE full ques	stions. All qu	lestions carry e	qual marks		Marks	со	Leve l
1	а	voltages? laboratory?	2. What is	the Need	nsmitting elec for Generatir	g High ∖	oltages in	20	CO1	L3
	b		e following b n; (ii) avalanch		nethods in solic n;	l dielectric	; (i) intrinsic		CO2	L4
	С	Discuss the	e limitations o	f Townsend	's theory.				CO2	L4
				(DR					
-	а		wnsend's first s criterion for		d ionization co	efficients.	Explain the	16 / 20	CO1	L3
	b	What are a	pplications of	High Voltag	ges?				CO2	L4
	С	What is tin these com		iss its comp	ponents and the	e factors w	/hich affect		CO1	L3
2	a	secondary 150 Hz. If th (i) Voltage	voltage of th ne load currer	e supply tra It is 1.2 mA, o	cuit has all capa ansformer is 120 determine				CO4	L3
	b	(a) Describ	e Cockroft- V	Valton volta	age multiplier o n for an n-stage				CO3	L4
				(DR					
-	а		tandard impu a near sample		e wave. Define . (5 marks)	its basic	parameters	16 / 20	CO3	L3
	b		modified mu		arx circuit for g	generation	of impulse		CO4	L4
	С			s and disad	vantages of Hig	gh Voltage	generation		CO6	

		using cascaded transformers?			
3	а	How will you specify an impulse generator? Describe the working of a multi-stage Marks impulse generator with a neat sketch	16 / 20	CO5	L3
	b	Explain the Chubb-Fortesque method for peak voltage measurement bringing out the sources of errors.		CO5	L4
	С	Explain sphere gap method? Explain specifications on spheres and associated accessories		CO6	L3
		OR			
-	а	Define the terms (i) Impulse voltages; (ii) Chopped wave; (iii) Impulse flash overvoltage; (iv) Impulse puncture voltage; (v) Impulse ratio for flash over; (vi) Impulse ratio for puncture	16 / 20	CO5	L3
	b	Explain the multistage impulse generator circuit		C07	L4
	С	Write principle and construction of generating voltmeter		CO6	L3
4	a	What do you mean by non-destructive testing? List out various techniques used.	16 / 20	CO7	L3
	b	What is insulation coordination?		CO7	L4
	С	Explain measurement of large capacitance.		C08	L3
		OR			
-	а	What are partial discharges? How are they detected using (a) straight detection, (b) balance detection methods?	16 / 20	CO7	L3
	b	Explain the measurement of dielectric constant and loss factor		CO8	L4
5	а	Explain in detail about the various tests conducted on overhead line insulators. (10marks)	16 / 20	CO9	L4
	b	Define the following: (i) Disruptive discharge voltage. (ii) Impulse flashover voltage and impulse ratio. (iii) 50% flashover voltage. (5 marks		CO10	L3
	С	(c) Explain the method of impulse testing of high voltage transformers. What is the procedure adopted for locating the failure? (5 marks)		CO9	L4
		OR			
	а	Explain with neat diagram, the method to measure the specific resistivity of an insulation specimen, along with dielectric constant and loss factor (15 marks)	16 / 20	CO9	L4
	b	Following measurements are made to determine the dielectric constant and complex permittivity of a test specimen: The air capacitance of the electrode system = 60 pF The capacitance and loss angle of the electrodes with specimen = 180 pF and 0.0085 respectively. (5 marks		CO9	L3
	С	Explain the testing of circuit breakers.		C010	L4
	d				

2. SEE Important Questions

Course:		High voltage	engineerii	ng			Mont	n / Year	May /	2018
Crs Co		15EE73	Sem:	VII	Marks:		180 m	inutes		
	Note	Answer all F	IVE full que	estions. All q	uestions carry	equal mai	rks.	-	-	
Modul	Qno.	Important Qı	uestion					Marks	CO	Year
е										
1				different typ	pes of rectifier	circuits fo	or producin	g 16 /		2014
		high d.c. vo	ltages.,?					20		
		Why is a Cockcroft-Walton circuit preferred for voltage multiplier								2015
					schematic diag					
					nd regulation		e multiplie	er		2013
					ulation minimiz					
					cascade conne	ction of t	ransformer	S		2016
		for producin								
	5 Why is it preferable to use isolating transformers for excitation with									2017
		cascade trar	nsformer ur	nits, if the po	wer requireme	nt is large	è			
2	1	What is the	principle o	f operation	of a resonant t	ransforme	er? How is	it 16 /		2007

		advantageous over the cascade connected transformers?	20	
	2	What is a Tesla coil? How are damped high frequency oscillations obtained from a Tesla coil?		2009
	3	Define the front and tail times of an impulse wave. What are the tolerances allowed as per the specifications?		2012
Ì	4	Give different circuits that produce impulse wave explaining clearly their relative merits and demerits		2013
	5	Describe the circuit arrangement for producing lightning current wave- forms in laboratories.		2014
		How is the circuit inductance controlled and minimized in impulse current generators?		
3	1	Explain with neat diagram the principle of operation of (i) series (ii) parallel resonant circuits for generating high a.c. voltages. Compare their performance.		2016
	2	Explain with diagrams, different types of rectifier circuits for producing high d.c. voltages.,?		2010
	3	Why is a Cockcroft-Walton circuit preferred for voltage multiplier circuits? Explain its working with a schematic diagram.		2017
	4	Give the expression for ripple and regulation in voltage multiplier circuits. How are the ripple and regulation minimized?		2014
	5	Explain the different schemes of cascade connection of transformers for producing very high a.c. voltages		2012
		Why is it preferable to use isolating transformers for excitation with cascade transformer units, if the power requirement is large		
4	1	Explain the method of impulse testing of high voltage transformer? what is the procedure adapted for locating the fault?	16 / 20	2017
	2	Explain the method of impulse testing of high voltage transformer? what is the procedure adapted for locating the fault?		2014
	3	What are the different power frequency tests done on insulator, mention the procedure of testing		2012
	4	Define the following terms – (a) withstand voltage (b) flash over voltage (c) 50% flas over voltage, (d) wet and dry power frequency tests as referred to high voltage testing, (e) creepage distance of an insulator. 8. Explain the testing of circuit breakers.		2017
	5	Define Disruptive discharge voltage.		2007
5	1	What are the different power frequency tests done on insulator, mention the procedure of testing	16 / 20	2017
	2	Define the following terms – (a) withstand voltage (b) flash over voltage (c) 50% flas over voltage, (d) wet and dry power frequency tests as referred to high voltage testing, (e) creepage distance of an insulator. 8. Explain the testing of circuit breakers.		2014
	3	Define Disruptive discharge voltage.		2012
	4	Explain the method of impulse testing of high voltage transformer? what is the procedure adapted for locating the fault?		2004
	5	What are the different power frequency tests done on insulator, mention the procedure of testing		2005

G. Content to Course Outcomes

1. TLPA Parameters

Table : TLPA - Example Course

Мо							Assessmen
dul	(Split module content into 2 parts which have						
e-	similar concepts)	g Hours					to Measure
#			for	Leve	Learning	Learning	Learning
			Content	l			
A	В	С	D	Ε	F	G	Н
1	Conduction and Breakdown in Gases: Gases	10	- L1	L2	-	-	-Unit Test
	as Insulating Media, Collision Process,		- L2		Rememb	Lecture	-
	Ionization Processes, Townsend's Current				ering		Assignment

					1	1	
1	Growth Equation, Current Growth in the Presence of Secondary Processes, Townsend's Criterion for Breakdown, Experimental Determination of Coefficients α and γ, Breakdown in Electronegative Gases, Time Lags for Breakdown, Streamer Theory of Breakdown in Gases, Paschen's Law Breakdown in Non-Uniform Fields and Corona Discharges. ConductionBreakdown in Liquid Dielectrics: Liquids as Insulators, Pure Liquids and Commercial Liquids, Conduction and Breakdown in Pure Liquids, Conduction and Breakdown in Commercial Liquids. Breakdown in Solid Dielectrics: Introduction, Intrinsic Breakdown, Electromechanical Breakdown, Thermal	10	- L1 - L2	L2	- Explainin g - Rememb ering - Explainin g	- Lecture	-Unit Test - Assignment
	Breakdown						
2	Generation of High Voltages and Currents: Generation of High Direct Current Voltages, Generation of High Alternating Voltages		- L2 - L3	L3	- Understa nding - Calculate		-Unit Test - Assignment
2	Generation of Impulse Voltages, Genera	tions of	-lhanulea	L3	-	_	-Unit Test
2	Currents, Tripping and Control of Impulse Gen		- L3	L3	Understa nding -	Lecture -	- Assignment
					Calculate		
	Measurement of High Voltages and Currents: Measurement of High Direct Current, Voltages, Measurement of High AC and Impulse Voltages,		- L2 - L4	L4	- Understa nding	-	-Unit Test - Assignment
					Explainin g &analyzi ng		
	Measurement of High Currents – Direct, Alternating and Impulse, Cathode Ray Oscillographs for Impulse Voltage and Current Measurements,		- L2 - L4	L4	- Understa nding - Explainin g &analyzi	- Lecture -	-Unit Test - Assignment
4		4	- L1	L2	ng		-Unit Test
	Overvoltage Phenomenon and Insulation Coordination in Electric Power Systems: National Causes for Over voltages - Lightning Phenomenon, Overvoltage due to Switching Surges		- L2	LZ	Rememb ering - Explainin g	Lecture	Assignment
	System Faults and Other Abnormal, Principles of Insulation Coordination on High Voltage and Extra High Voltage Power Systems		- L2 - L4	L4	- Understa nding - Explainin g	- Lecture	-Unit Test - Assignment
	Non-Destructive Testing of Materials and Electrical Apparatus: Introduction, Measurement of Dielectric Constant and Loss Factor, Partial Discharge Measurements.		- L2 - L4	L4	- Understa nding - Explainin	- Lecture - -	-Unit Test - Assignment

	High Voltage Testing of Electrical Apparatus:		g	
5	Testing of Insulators and Bushings, Testing of Isolators and Circuit Breakers, Testing of Cables, Testing of Transformers, Testing of Surge Arrestors, Radio Interference Measurements,	- L1 - L2	- Rememb ering - Explainin g	-Unit Test - Assignment

2. Concepts and Outcomes:

Table : Concept to Outcome - Example Course

Table : Concept to Outcome – Example Course	
Mo Learning Identified Final Concept Concept CO Compon	ents Course Outcome
dul orOutcome Concepts Justification (1.Action Ve	
e- fromstudy of from (What allLearning 2.Knowledge	
#the ContentContentHappened from the3.Condition	
or Syllabus study of Content / Methodolog	
Syllabus. Ashort 4.Benchma	ark)
word for learning or	
outcome)	
A I J K L M	N
1 Townsend's Breakdow Paschen's ConductionBreakd Conduction	
Criterion for n in Laweakdown own in Liquid Breakdown	inDielectrics:
Breakdown, Electrone in Non- Dielectrics: LiquidsCommercial Li	
Experimental gative Uniform as Insulators, Pure	Intrinsic Breakdown,
Determinatio Gases, Fields and Liquids and	Electromechanical
n of Time Corona Commercial Coefficients α Lags for Discharges. Liquids, Conduction	Breakdown, Thermal Breakdown
Coefficients α Lags for Discharges. Liquids, Conduction and γ, Breakdow and Breakdown in	Inernal breakdown
n, Pure Liquids,	
Streamer	
Theory of	
Breakdow	
n in	
Gases,	
2 High Generatio Generation of Auto	Tripping and
Generation of Direct n of High Impulse transformers	
	ngingImpulse
Voltages and Voltages, Voltages, transformers	
Currents:	
Generation of autotransfor	
copper econ	
3 MeasuremeVoltage Measurem Alternating and Cathode Ray	
	is for Current
Voltages MeasureCurrents – Impulse	Measurements
and ment of Direct,	Measurements
Currents: High AC	
Measuremeland	
nt of High Impulse	
Direct Voltage	
Current, s,	
Nation Overvoltag System Faults Principles	
ANationOvervoltagSystem FaultsPrinciples4Overvoltagale due toand OtherInsulatio	on Voltage and
4NationOvervoltagSystem FaultsPrinciples4Overvoltagale due toand OtherInsulatioeCausesSwitchingAbnormal,Coordination	on Voltage and ion Extra High
ANationOvervoltagSystem FaultsPrinciples4Overvoltagale due toand OtherInsulatio	on Voltage and ion Extra High Voltage Power
4NationOvervoltagSystem FaultsPrinciples4Overvoltagale due toand OtherInsulatioeCausesSwitchingAbnormal,Coordination	on Voltage and ion Extra High
4NationOvervoltagSystem FaultsPrinciples4Overvoltagale due toand OtherInsulatioeCausesSwitchingAbnormal,CoordinationPhenomenfor OverSurges,Coordination	on Voltage and ion Extra High Voltage Power

	n in	g				
	Electric	Phenom				
	Power	enon,				
	Systems:					
5	Non-	Measur	Partial	. High Voltage	Testing of	Testing of
	Destructive	ement	Discharge	Testing of	Isolators and	Cables, Testing
	Testing of	of	Measurem	Electrical	Circuit Breakers,	of Transformers,
	Materials	Dielectri	ents	Apparatus:		Testing of Surge
	and	С		Testing of		Arrestors, Radio
	Electrical	Constan		Insulators and		Interference
	Apparatus:	t and		Bushings,		Measurements,
	Introductio	Loss		_		
	n,	Factor,				